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What 1s a Homomorphism?

Definition: Let G and H be groups and suppose f : G — H is a
function such that for all x,y € G,

flxy) = f(x)f(y).

Then f is called a group homomorphism, or just homomorphism
for short. In words, we say “f preserves products.”

Note: to calculate xy we are using the operation in G, but to
calculate f(x)f(y) we are using the operation in H.




1. f:R* — R* by f(x) = |x|
f(xy) = |xy| = [x|ly| = f(x)f(y).

2. f:R* — R* by f(x) = x?
f(xy) = (xv)? = x°y* = f(x)f(y).

3. f:Z — Zn by f(m) = m mod n, with addition. Use the
division algorithm to write

my = p1n—+ qi, M2 = p2n + Q.

Then my + ma = (p1 + p2)n+ g1 + g2, so
f(mi+m2) = (g1+qg2) mod n = g1 mod n+q2 mod n = f(my)+f(m:



Not All Functions are Homomorphisms

Let f : R — R by f(x) = x2. The operation is addition. Then
fx+y)=(x+y)* =x*+2xy +y

but
f(x) + f(y) = x* + y°.

So it is not true that f(x + y) = f(x) + f(y) for all x,y € R, so f
IS not a homomorphism.




Some More Interesting Examples

The determinant function, det : GL(n,R) — R*, is a
homomorphism, since

det(AB) = det(A) det(B).
Define sgn : S, — {1, -1} by

{ 1 if o is an even permutaton
sgn (o) =

—1 if o is an odd permutaton

You have to check that for all a, 5 € S,

sgn («3) = sgn (a)sgn ().

which boils down to checking four cases, namely even plus even is

even, even plus odd is odd, odd plus even is odd, and odd plus odd
IS even.




Properties of Homomorphisms:

Let f : G — H be a homomorphism. Then

1. f(e(;) — €H
Proof:
x = xeg = f(x) = f(xeg) = f(x)f(eg) = ey = f(eg).
2. f(x")=(f(x))",forall xe Gandallne Z
Proof: f(x?) = f(xx) = f(x) f(x) = (f(x))?, etc for positive
n. If n= -1, then
xx ' =eg = floc) = fleg) = F(x)F(x"') = ey =
F(x~1) = (f(x))~".
3. If |x| is finite, then |f(x)| divides |x]|
Proof: let x| = n. Then
X"= &g = f(X”) = f(eG) — (f(x))” = eH =
[f(x)| divides n.




Kernels and Images

If f: G — H is a homomorphism, define
1. ker(f) ={x€ G| f(x) = ey}
2. im(f)=A{f(x) | xe€ G} = f(G)
Then
ker(f) < G and im (f) < H.

Proof: (for kernel)
» f(eg) = eH = eg € ker(f).

> X,y € ker(f)

= f(xy™1) = F()f(y™1) = f(x) (f(y)) " = enen = en,
so xy~ ! € ker(f).

» Proof that im (f) < H is left as an exercise.




1. For det: GL(n,R) — R*,
ker(det) = {A € GL(n,R) | det(A) = 1} = SL(n,R).

2. For sgn : 5, — {1,-1}
ker(sgn) = {c € S, |sgn(c) =1} = A,.

3. For f : Z — Z, by f(m) = m mod n, with addition,
ker(f) ={m| m=0mod n} =< n>

and
im(f)={mmodn|meZ}=127Z,.



Properties of Subgroups Under Homomorphisms

First three parts of Theorem 10.2: let f : G — H be a
homomorphism and let K be a subgroup of G. Then

1. f(K)={f(k)| k € K} is a subgroup of H.
2. If K is cyclic then f(K) is cyclic.
3. If K is Abelian then f(K) is Abelian.

Proof: 1. left as an exercise.
2. Suppose K = (k). Then x € K = x = k". Then

f(x) = f(k") = (f(k))",

which means that f(K) = (f(k)).
3. Suppose xy = yx for all x,y € K. Then

f(xy) = f(yx) & f(x)f(y) = f(y)f(x),

which means all elements in f(K) commute.




Let f : R —> GL(2,R) by £(6) = ‘;T:g _;';g fis a

homomorphism because f(a)f(3) = f(a + ) :

- cosa —sina | [ cosB —sinfB | [ cos(a+ ) —sin(a+
sinaw cosa | | sinf3  cosfB | | sin(a+ B) cos(a -

using appropriate trig identities. Check that ker(f) = (27) and
im (f) is the group of 2 x 2 rotation matrices. In particular, R is

Abelian, so im (f) is Abelian and im (f) is an Abelian subgroup of
GL(2,RR). If the positive integer n is fixed and

2 27k
K—<_ﬁ>—{ikez}’
n n

then f(K) = (f(27/n)) < D,, consisting of all rotations of a
regular n-gon.




One-to-one and Onto Homomorphisms

Let f : G — H be a group homomorphism.
Definition: f is called one-to-one if

f()q) = f(Xg) = X1 = Xv.

Defintion: f is called onto if every element in H is in im (f).
Theorem: let f : G —> H be a group homomorphism.

» f is one-to-one if and only if ker(f) = {eg}
» f is onto if and only if im(f) = H

Proof: (for one-to-one) suppose f is one-to-one: Let x € ker(f)
Then f(x) = ey and f(eg) = ey. Therefore x = eg.
Now suppose ker(f) = {eg}, and let f(x1) = f(x2). Then

fxax, ') = FOa)f (g 7) = F(a)(f(x)) ™" = fa)(f(x)) ™" = ¢

Thus xlxz_l € ker(f) = x1x2_1 = ec = X1 = Xo.




What is an Isomorphism?

Let f : G — H be a group homomorphism.

Definition: f is called an isomorphism if f is one-to-one and onto
Thus f is an isomorphism if ker(f) = {eg} and im (f) = H.
Note: every isomorphism f : G — H has an inverse

f~1: H — G, defined by

fx) =y &x=f(y)

which is also an isomorphism.
Definition: if there is an isomorphism f : G — H, then we say

the groups G and H are isomorphic, and we write

G ~ H.




Example 1
LetH—{ é n; EGL(21R)mEZ}anddefinef:Z%H
by _ _

f(m) =

m
1

E
- O -

Then f is an isomorphism:

1. f is a homomorphism since

1 m+n 1
0 1 0

f(m+n) = | = f(m)f(n

O =
-t 3

2. f is one-to-one since f(m) = R =

3. f is onto since obviously im (f) =




Example 2

Let G = (a) be a cyclic group of order n. Then G ~ Z,,.
Proof: for k € Z, define f : G — Z, by f(a*) = k mod n.
» f is well-defined: @ = a¥ = n divides j — k = j = k mod n.
» f is a homomorphism: f(a/a") = f(a*%) = (j + k) mod n;
and f(a/) + f(a*) = j mod n+ k mod n = (j + k) mod n.
» f is one-to-one:
f(a*)=0=k=0mod n= k= qgn= a" = (a")7 = eg.
» f is onto: this is obvious since k € Z, so im (f) = Z,,.
Alternate Proof: use g : Z, — G defined by g(m) = a™.

(g = f~1.) This makes the algebra easier since g is obviously
well-defined.



Properties of |Isomorphisms

Let f : G — H be an isomorphism.

(D
-

. f~1:H — G is also an isomorphism

fleg) = en

for all x € G, f(x") = (f(x))"

x,y commute in G if and only if f(x), f(y) commute in H
G = (x) if and only if H = (f(x))

for all x € G, |x| = |f(x)|

if G and H are finite groups, then |G| = |H|

G 1s Abelian if and only if H is Abelian

G i1s cyclic if and only if H is cyclic

f(Z(G)) = Z(H)

—n
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Properties 2 and 3 are true for all homomorphisms.

4. xy = yx = f(xy) = f(yx) = f(x)f(y) = f(y)f(x); this is true
for any homomorphism. But if f is an isomorphism, then
f(x)f(y) = f(y)f(x) = f(xy) = f(yx) = xy = yx, since f is
one-to-one

6. let |[x| = n,|f(x)| = m. For any homomorphism f we know m
divides n. If f is also an isomorphism: (f(x))™ = ey =

f(x™) = ey = x™ = eg, since f is one-to-one. Thus n divides m
50 =R

8. follows from 4

9. follows from 5

10. x € Z(G) => xg =gx, forall g € G = f(x)f(g) = f(g)f(x)
= f(x) € Z(im (f)). So, for any homomorphism,

f(Z(G)) C Z(im(f)). If f is an isomorphism, then im (f) = H. Fe
the other inclusion, repeat the argument for f~1 : H — G.




Example 3

Show U(8) ~ {(1),(12)(34), (13)(24), (23)(14)}
Solution: U(8) = {1,3,5,7}. Define
f:U(B) — 1(1),(12)(34),(13)(24), (23)(14)} by

f(1) = (1), f(3) = (12)(34), f(5) = (13)(24), £(7) = (23)(14),

Now consider the multiplication tables of both groups:

|1 3 5 7 5 (1) (12)(34) (13)(24) (2
1|1 3 5 7 (1) (1)  (12)(34) (13)(24) (2
313 1 7 5  (12)(34) | (12)(34) (1)  (23)(14) (1
515 7 1 3  (13)(24) | (13)(24) (23)(14) (1) (1
717 5 3 1  (23)(14) | (23)(14) (13)(24) (12)(34)

Observe that f maps the multiplication table on the left precisely
to the multiplication table on the right: i.e. f(xy) = f(x)f(y). W

say, Isomorphic groups have the same group structure.




Example 4

Finite groups that are isomorphic have the same order. But groug
can have the same order and not be isomorphic. For example, her
are three groups of order 12: Zi2, Dg, and Az, no two of which ar
isomorphic. There are many ways to show this:

» the largest order of any element in Z12, Dg or As is 12, 6, or
3, respectively.

» compare the number of elements of order 2: Zi2 has 1, Dsg
has 7, and As has 3.

» Zio 1s Abelian and cyclic; the biggest cyclic subgroup Dg has
Is of order 6; the biggest cyclic subgroup Az has is of order 3

There are only five non-isomorphic groups of order 12: the three
above, plus one other Abelian group and one other non-Abelian

group.




Cayley's Theorem

Theorem 6.1: Every group is isomorphic to a group of
permutations. If |G| = n, then G is isomorphic to a subgroup
O

Proof: given a group G we shall construct a group of
permutations, H, and then show that G = H. For g € G, def
Ty : G — G by Ty(x) = gx. Since To(g"'y) =y, T, ison
since Tg(x) = Tg(y) = gx =8y = x =y, Tz is one-to-one.
Thus T, is a permutation of all the elements of G. Let

with function composition, and define ¢ : G — H by

We claim ¢ is an isomorphism:
= rmmm e 111




1. ¢ is a homomorphism: ¢(ab) = ¢(a) o ¢(b). To show two
functions are equal you have to evaluate them at a point.
(¢(ab))(x) = Tap(x) = abx and
(¢(a) o p(b))(x) = Ta(Tp(x)) = Ta(bx) = abx.

2. ¢ is one-to-one: ¢(a) = ¢(b) = Ta(x) = Tp(x), for all x € (
— 3 A -

3. ¢ is onto: by definition of ¢. For any T, € H,¢(g) = T,.

Finally, if |G| = n, then you can number the elements of G as
X1,X2,...,Xn and each element T, € H can be considered as a
permutation o € S, defined by

Tg(Xi) = Xo(i)-

Note: Example 3 above showed that U(8) is isomorphic to a
subgroup of S4.



